^^Discesa rettilinea, rotolando senza strisciare, tfs_isk.

 tx | tb | H/L | rot

Misurare la legge oraria del moto

un metodo: tfs_isk

  1. prefissare la lunghezza totale del percorso
  2. dividerlo in parti uguali
  3. misurare il tempo impiegato per arrivare ad ogni divisione.

es Divisione in 4 parti uguali di lunghezza totale LT=120cm

N L[cm] t[s]
s1 30 ???
s2 60 ???
s3 90 ???
s4 120   ???  
  

Legenda

L   lunghezza percorsa dall'inizio
t   durata impiegata

Identificatore riga N (Numero o Nome)

invece della usuale numerazione 1 2 3 ... ho usato la usuale denominazione letterale delle lunghezze percorse
s1   spazio dall'inizio a 30cm
s2   spazio dall'inizio a 60cm
s3   spazio dall'inizio a 90cm
s4   spazio dall'inizio a 120cm

Lunghezze ammesse

  1. siccome vogliamo confrontare facilmente i risultati, occorre usare le stesse lunghezze di percorso
  2. siccome gli spazi a disposizione per il percorso saranno diversi a seconda del tavolo dello sperimentatore

⇒ scegliere come lunghezze una delle colonne della tb seguente

  cm cm cm cm cm cm
s1 15 20 25 30 35 40
s2 30 40 50 60 70 80
s3 45 60 75 90 105 120
s4 60   80   100   120   140   160  

Una e' meglio dell'altra?

Avendo piu' possibilita' di scelta, si dovrebbe scegliere cio' che permette la misura piu' precisa. Idem per la scelta dell'inclinazione. Quali ?

Per ridurre gli errori: evitare i tempi troppo brevi, le velocita' troppo elevate.

 

Misurare con la precisione del mm.

 

Prosegue

  1. Tb ms legge oraria >>>
  2. Vogliamo riprodurre a scuola il moto di discesa fatta a casa. Come si fa ? >>>
  3. Rotolare

Approfond

Video su youTube

  1. sfere, cilindri, bottiglie, ecc... pieni/vuoti rotolano su un piano inclinato (playlist).
    1. (Singoli video)
      Verificare la planarità del piano inclinato con una sfera.

      Piano inclinato. Discesa di corpi diversi.

    2. Sfere diverse rotolano su un piano inclinato. Qual e' piu' veloce ?

      Discesa sfera

    3. Cilindri diversi rotolano su un piano inclinato. Quale sara' piu' veloce ?
    4. Cilindro pieno/vuoto; bottiglia piena di sabbia, di acqua, rotolano su un piano inclinato. Chi e' il piu' veloce/lento ?

lg: riprodurre = replicare ?

Rem: Linea di scrittura: base, apice, pedice. >>>

E' significativo misurare la somma progressiva delle parti uguali rispetto a

  cm       
s1 30 (1/4)sT   spazio a 1/4 totale
s2 60 (2/4)sT   spazio a 2/4    
s3 90 (3/4)sT   spazio a 3/4    
s4 120   (4/4)sT   spazio totale

 

  cm       
s1 30   s1  s1 spazio minimo
s2 60   2s1 2*s1
s3 90   3s1 3*s1
s4 120     4s1 4*s1

le lughezze percorse alle quali si misurano i tempi sono i multipli della prima lunghezza.

 

Le lunghezze potrebbero essere qualsiasi, es s1= 27,7 cm, ma ci atteniamo a quelle indicate per poterci piu' facilmente confrontare.

 

Links

  1. Movimento spazio tempo. Cinematica: cinematica del moto e cinematica del cambiamento. Moto e tempo. Moto e spazio.
  2. Spazio e tempo totali di un moto.
  3. Misurare la progressione del moto in termini di spazio e tempo.
  4. Le grandezze della cinematica: spazio, tempo, velocita', accelerazione.

 

 

 

 

 

 

 

 

Guida ins

MFK lz.

Poi: vrf | tb_clas|pdf | corp | grf_sft

Esp di "MFK moto vario causato da una forza costante", Linea logica. | Intro

  1. recupero:

Sequenza 2015: Misur | 2 | Grf vFt

Cosa dovrebbero gia' sapere, ma si sono scordati, o non e' stato interiorizzato.

  1. Prerequisiti, ripassare

    1. Velocita' media, lunghezza, durata, del moto di un punto su una linea.
    2. Moto a velocita' crescente.
    3. sft grafico cartesiano.

 

  1. MAK. Moto = tempo trascorso + spazio percorso.
  2. Moto, spazio, materia, tempo, cambiamento, posizione, spostamento, velocita', accelerazione, forza, energia.

Esp ad aprire, poi a stringere >>>

Cosi' come si presenta questa lz, e' piu' ad aprire che a stringere.

L'obiettivo primario e': il controllo dell'inclinazione.

Tabella dati

Non ho dato indicazione 2015-16 (allievi nuovi per me), ed il risultato e' stato che nessuno ha organizzato i dati in tabella. Inoltre la tb che poi e' nata la volta successiva, su mia richiesta, e' in una forma non standard, che ho accolto per valorizzarla, ma che ha creato problemi di comprensione ad alcuni allievi.

L'esperienza di riorganizzare a posteriori va fatta, ma 1 volta e' sufficiente, meglio usare l'esperienza dell'insegnante e organizzare al meglio a priori, in modo da utilizzare dall'inizio la forma finale.

Dopo aver verificato il risultato, penso sia meglio discutere come organizzare i dati, e stabilire tb di comune accordo.

1 tabellone, tante tabelline.

Esp ristretto alla sfera.

   Discesa rettilinea di sfera su piano inclinato (rotolare senza strisciare), legge oraria.

 

Tempi e spazi della misura 2015-16

Siamo liberi di fare tutte le misure che vogliamo, ma stabiliamo un minimo.

s1 t1  spazio e durata interi cm   120   100   80   60  
spazio e durata a 1/2 spazio     cm 60 50 40 30
spazio e durata a 1/4 spazio cm 30 25 20 15

 

Piano inclinato. Forze.

  1. Un'apertura dello studio a partire dall'esp di questa pagina "Discesa rettilinea su piano inclinato, rotolando senza strisciare" e' di approfondire il piano inclinato
  2. Piano inclinato. Corpo appoggiato sul piano inclinato.
  3. Forza tangente, e forza perpendicolare al piano inclinato.
    Dato che la capacita' di indagare il sistema di forze e' ancora scarsa, meglio cominciare a farlo.
  4. Meglio cominciare dalla situazione statica: un carrello trattenuto.

    Piano inclinato: Forza tangente di sostegno in funzione dell'inclinazione.

  5. Paragone col pendolo, e la pista circolare.
  6. Richiamare il caso "piano orizzontale"
  7. Piano inclinato non per il peso, ma per forza esterna qualsiasi.
  8. Piano inclinato; didattica.
  9. Come fa la sfera, carrello, cilindro, a mettersi in moto sul piano inclinato? Perchè rotola e non scivola?

 

Titolo

  1. Discesa rettilinea su piano inclinato, rotolando senza strisciare
    c: originale.
  2. Discesa rettilinea, rotolando senza strisciare.
    c: 30-set-2017. "Discesa" sottintende che ci sia inclinazione.
    "Rettilinea" potrebbe essere sia su una "retta inclinata (guida rettilinea)" che su un "piano inclinato".

 

 

 

 

 

 

 

 

 

 

Vecchio inizio abbandonato

cmt: troppa carne al fuoco, il tema sarebbe: "cosa significa misurare il moto", o piu' sperimentalmente "come misurare il moto": lo misuro come posso.

Questo discorso all'inizio e' meglio che me lo faccio da me.

 

c: Misurare il moto di discesa di un corpo che rotola senza strisciare.

Cercare regolarita' tra i dati.

Portare il corpo rotolante a scuola, per rifare il moto di discesa.

Misurare cosa?

Non stiamo sperimentando a caso, bensi' stiamo attuando un

quindi ri-leggiamo il progetto.

Misurare la legge oraria del moto

 

 

cmt: meglio separare i nomi dalla misura reciproca, dal fatto che le misure reciproche potrebbero essere i nomi

 

Misurare la legge oraria del moto

metodo: fissare delle posizioni sul percorso, e misurare il tempo di arrivo, iniziato alla partenza.

Cercare regolarita' tra i dati.

Portare il corpo rotolante a scuola, per rifare il moto di discesa.

Quante e quali misure sul percorso ?

Siccome vogliamo scoprire-inventare una regolarita' nella corrispondenza s↔t, la scelta piu' sensata e' di suddividere il percorso totale con una regola

  1. il modo piu' semplice e' dividere il percorso in parti uguali
  2. divisoni progressive: in 2 parti uguali, e poi ridividere la prima parte.

Misura delle lunghezze in cm.

es Divisioni progressive

N L[cm]             
s3 120      sT    spazio totale
s2 60   sT/2   1ª divisione: meta'    
s1 30   sT/4   2ª divisione: meta' della meta' = 1/4

es Divisione in parti uguali

  cm         
s1 30 (1/4)sT   s1 spazio a 1/4 totale
s2 60 (2/4)sT   2s1 spazio a 2/4    
s3 90 (3/4)sT   3s1 spazio a 3/4    
s4 120   (4/4)sT   4s1 spazio totale

Come denominare

Conviene: gli spazi con indice progressivo concorde al tempo: s1 s2 s3 ...

Quando si tratta di valutarne l'estensione, esistono 2 possibilita' estreme:

  • prendere come riferimento (metro, UM) lo spazio piu' corto s1,
  • oppure lo spazio piu' lungo sT

pero' in generale si potrebbe prendere uno qualsiasi degli spazi, o un riferimento arbitrario. Dobbiamo scegliere quello che ci fa capire meglio. E forse il capire al meglio e' di comprenderli entrambi, come per conoscere una monete occorre guardare entrambe le facce.

 

Versione semplice migliorata

Misurare la legge oraria del moto

un metodo:

  1. prefissare la lunghezza totale del percorso
  2. dividerlo in parti uguali
  3. misurare il tempo impiegato per arrivare ad ogni divisione.

es Divisione in 4 parti uguali di lunghezza totale LT=120cm

  L[cm] t[s]
s1 30 ???
s2 60 ???
s3 90 ???
s4 120   ???  

Siccome gli spazi a disposizione per il percorso saranno diversi a seconda del tavolo dello sperimentatore, scegliere come lunghezze una delle colonne della tb seguente.

  cm cm cm cm cm cm
s1 40 35 30 25 20 15
s2 80 70 60 50 40 30
s3 120 105 90 75 60 45
s4 160   140   120   100   80   60  

Avendo piu' possibilita' di scelta, si dovrebbe scegliere cio' che permette la misura piu' precisa. Idem per la scelta dell'inclinazione. Quali ?

Le lunghezze potrebbero essere qualsiasi, es s1= 27,7 cm, ma ci atteniamo a quelle indicate per poterci piu' facilmente confrontare.

Misurare con la precisione del mm.

 

 

Anni precedenti

15-9-2015 2AI 2BI 2M

Poi: VrfCrz