^^Machine learning. Percorso di apprendimento.
Machine learning;
apprendimento automatico.
Installato Python con miniconda
Libri online con jupyter notebook
- python
nbviewer.jupyter.org/github/jakevdp/ Whirlwind Tour Of Python
- machine learning
colab.google/ Python Data Science Handbook
settembre2020 ho deciso di seguire
Python Data Science Handbook
An interactive deep learning book with code, math, and discussions.
Provides NumPy/MXNet, PyTorch, and TensorFlow implementations.
20-9-2020 ho trovato Deep Learning - The Straight Dope
gluon.mxnet.io
Links librosito
ix Python.
Articoli
Elegant Python code for a Markov chain text generator
Esprit de l'escaler
parlando di risposte argute a qualcosa detto da qualcuno, che ti vengono in
mente sempre troppo tardi.
Descrive esattamente quella condizione esasperante in cui la risposta perfetta e
brillante ti viene in mente soltanto quando ormai sei in fondo alle scale e
lontano dal tuo interlocutore, per cui è troppo tardi per dirla e ti prenderesti
a calci per non averla pensata prima.
Staircase wit thinking of a clever comeback when it's too late to
deliver it.
wp/Esprit_de_l'escalier
-
Help and Documentation in IPython
-
Keyboard Shortcuts in the IPython Shell
-
IPython Magic Commands
-
Input and Output History
-
IPython and Shell Commands
-
Errors and Debugging
-
Profiling and Timing Code
-
More IPython Resources
-
Understanding Data Types in Python
-
The Basics of NumPy Arrays
-
Computation on NumPy Arrays: Universal Functions
-
Aggregations: Min, Max, and Everything In Between
-
Computation on Arrays: Broadcasting
-
Comparisons, Masks, and Boolean Logic
-
Fancy Indexing
-
Sorting Arrays
-
Structured Data: NumPy's Structured Arrays
-
Introducing Pandas Objects
-
Data Indexing and Selection
-
Operating on Data in Pandas
-
Handling Missing Data
-
Hierarchical Indexing
-
Combining Datasets: Concat and Append
-
Combining Datasets: Merge and Join
-
Aggregation and Grouping
-
Pivot Tables
-
Vectorized String Operations
-
Working with Time Series
-
High-Performance Pandas: eval() and query()
-
Further Resources
-
Simple Line Plots
-
Simple Scatter Plots
-
Visualizing Errors
-
Density and Contour Plots
-
Histograms, Binnings, and Density
-
Customizing Plot Legends
-
Customizing Colorbars
-
Multiple Subplots
-
Text and Annotation
-
Customizing Ticks
-
Customizing Matplotlib: Configurations and Stylesheets
-
Three-Dimensional Plotting in Matplotlib
-
Geographic Data with Basemap
-
Visualization with Seaborn
-
Further Resources
-
What Is Machine Learning?
-
Introducing Scikit-Learn
-
Hyperparameters and Model Validation
-
Feature Engineering
-
In Depth: Naive Bayes Classification
-
In Depth: Linear Regression
-
In-Depth: Support Vector Machines
-
In-Depth: Decision Trees and Random Forests
-
In Depth: Principal Component Analysis
-
In-Depth: Manifold Learning
-
In Depth: k-Means Clustering
-
In Depth: Gaussian Mixture Models
-
In-Depth: Kernel Density Estimation
-
Application: A Face Detection Pipeline
-
Further Machine Learning Resources
Talk
NomeFile
ml_pydsh machine learning python data science handbook