![]() |
impacchettamento "a piramide". Oranges in a Hexagonal Cubic Packing Arrangement. credits: HCP_Oranges.jpg
|
![]() |
Snowballs stacked in preparation for a snowball fight. |
Packing type
have the same density!
![]() |
Il modo più efficiente di impacchettare insieme cerchi di diverse dimensioni non
è ovvio. credits: Citrus_fruits.jpg
|
wp/Impacchettamento_di_sfere | Sphere_packing
Impacchettamento_compatto_di_sfere | Close-packing_of_equal_spheres
es: Costipazione.
poiche' posso impacchettare seguendo una tassellatura.
This conjecture is the oldest problem in discrete geometry.
The Kepler conjecture forms part of Hilbert’s 18th problem, which raises questions about space groups, anisohedral tilings, and packings in Euclidean space.
1585 Thomas Harriot first pondered the mathematics of cannonball stacks and later asked Johannes Kepler if cannonball stack was truly the most dense.
In the metric spaces
are closely related definitions of well-spaced sets of points,
packing radius and covering radius of these sets measure how well-spaced they are.