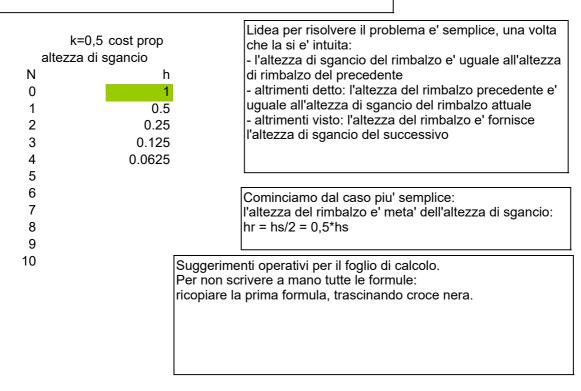
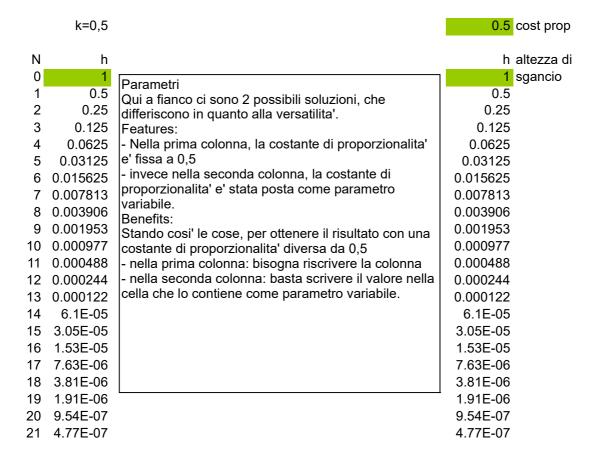

p: calcolare la successione delle altezze dei rimbalzi.


L'idea per risolvere il problema e' semplice, una volta che la si e' intuita.


p: calcolare la successione delle altezze dei rimbalzi

Cominciamo dal caso piu' semplice: l'altezza del rimbalzo e' meta' dell'altezza di sgancio: hr = hs/2 = 0,5*hs



p: calcolare la successione delle altezze dei rimbalzi, sapendo la formula che fornisce l'altezza del rimbalzo: hr =k*hs

p: calcolare la successione delle altezze dei rimbalzi, tramite la formula dell'altezza del rimbalzo hr =k*hs

p: calcolare la lunghezza totale del moto, percorsa dalla pallina durante la successione dei rimbalzi

0.5 cost prop

Ν	h	l_1r	I_cum
0	1		0
1	0.5	1.5	1.5
2	0.25	0.75	2.25
3	0.125	0.375	2.625
4	0.0625	0.1875	2.8125
5	0.03125	0.09375	2.90625
6	0.015625	0.046875	2.953125
7	0.007813	0.023438	2.976563
8	0.003906	0.011719	2.988281
9	0.001953	0.005859	2.994141
10	0.000977	0.00293	2.99707
11	0.000377	0.00295	2.998535
12	0.000244	0.000732	2.999268
13	0.000122	0.000366	2.999634
14	6.1E-05	0.000183	2.999817
15	3.05E-05	9.16E-05	2.999908
16	1.53E-05	4.58E-05	2.999954
17	7.63E-06	2.29E-05	2.999977
18	3.81E-06	1.14E-05	2.999989
19	1.91E-06	5.72E-06	2.999994
20	9.54E-07	2.86E-06	2.999997
21	4.77E-07	1.43E-06	2.999999

Legenda

I_1r lunghezza di 1 rimbalzo intesa come discesa + salita
I_cum lunghezza cumulativa

E' interessante provare lo sgancio da 1 m con k=0,5 ln tal caso la lunghezza totale e' 3m. Come spiegarlo?

p: calcolare i tempi del movimento.

	0.5		cost prop
Ν	h	t_1r	t_cum
0	1		0
1	0.5	0.770799	0.770799
2	0.25	0.545037	1.315836
3	0.125	0.3854	1.701236
4	0.0625	0.272519	1.973754
5	0.03125	0.1927	2.166454
6	0.015625	0.136259	2.302714
7	0.007813	0.09635	2.399063
8	0.003906	0.06813	2.467193
9	0.001953	0.048175	2.515368
10	0.000977	0.034065	2.549433
11	0.000488	0.024087	2.57352
12	0.000244	0.017032	2.590553
13	0.000122	0.012044	2.602596
14	6.1E-05	0.008516	2.611113
15	3.05E-05	0.006022	2.617135
16	1.53E-05	0.004258	2.621393
17	7.63E-06	0.003011	2.624404
18	3.81E-06	0.002129	2.626533
19	1.91E-06	0.001505	2.628038
20	9.54E-07	0.001065	2.629103
21	4.77E-07	0.000753	2.629855

Legenda **t_1r** durata di 1 rimbalzo intesa come
discesa + salita

t_cum durata cumulativa

Formule:

s=1/2*a*t^2 moto uniformemente accelerato t=radq(2*s/a)

9,81 m/s^2 accelerazione di gravita'

accelerazione di gravita' 9.81 m/s^2