^^Equazioni di Maxwell, come ha fatto a inventarle?

www.fisicamente.net/index-4.htm

 

Nel 1855 il giovane fisico scozzese James Clerk Maxwell (1831 - 1879) iniziò ad occuparsi di elettromagnetismo. Egli disponeva dell'elaborazione matematica del metodo delle 'analogie' sviluppato da W. Thomson (2); conosceva bene i contributi di Weber all'elettrodinamica; conosceva la matematica di Green e Stokes; aveva studiato Helmholtz e la sua cinematica dei fluidi ed aveva, naturalmente, ben presente l'opera di Faraday. L'iter lungo cui si sviluppa il complesso della teoria del campo elettromagnetico di Maxwell è segnato da 3 memorie fondamentali e dal famoso Treatise on Electricity and Magnetism (bibl. 15) del 1873.

La prima delle memorie di Maxwell,

On Faraday's Lines of Force (bibl.12), è un riconoscimento di difficoltà che un ricercatore incontra nel voler formalizzare la scienza elettrica. Questo ricercatore ha a disposizione, da una parte, la gran mole di risultati sperimentali che vengono continuamente sfornati e, dall'altra, la necessità di familiarizzarsi con una gran quantità di matematica molto complessa "la cui sola memorizzazione già di per sé interferisce materialmente con altre ricerche". È quindi necessario, secondo Maxwell, trovare nuovi metodi di lavoro. Uno di questi è proprio il metodo delle analogie che Thomson aveva introdotto (questo metodo permette di ottenere idee fisiche senza adottare teorie fisiche). Il fatto che colpiva Maxwell era, da una parte, la completa diversità di due fenomeni come il moto uniforme del calore in un mezzo omogeneo (dove sembra esservi un'azione a contatto da particella a particella) e l'azione a distanza e, dall'altra, l'identità formale delle leggi matematiche che descrivevano i due fenomeni: basta solo sostituire sorgente di calore con centro di attrazione, temperatura con potenziale, ... Con questo apparato concettuale egli mostrò che alle concezioni di Faraday era possibile applicare gli stessi metodi matematici con i quali erano state trattate la teoria dell'elasticità e l'idrodinamica. (le equazioni differenziali alle derivate parziali). Ma ciò che fa un poco pensare è il fatto che una matematica nata per la descrizione di fenomeni punto per punto riesca a descrivere una azione a distanza (sembra che anche la matematica dia una mano al superamento delle differenze tra azioni a distanza ed a contatto).

La seconda memoria di Maxwell,

On Physical Lines of Force (bibl. 13), presenta un insieme di analogie e modelli meccanici a sostegno delle idee di Faraday che, quasi certamente, lo stesso Faraday avrebbe respinto. Le linee di forza non sono più una mera rappresentazione di come le forze del campo sono distribuite; esse assumono ora un carattere fisico. Si tratta di linee immerse in un fluido elastico, (l'etere) sottoposto ad uno stress, ad uno stato di sforzo proprio per il fatto di trovarsi situato tra due polarità. La linea di forza viene allora pensata come una corda tesa, cioè in tensione, su cui si esercitano delle pressioni laterali, perpendicolari e di uguale intensità. In accordo con Thomson, è come il moto vorticoso di un fluido ...

 

Nell'ultima parte di questa sua memoria Maxwell torna all'analogia di Thomson tra mezzo in cui si costruiscono vortici (e ruote inattive) e sostanze elastiche. Il mezzo nel quale si propagano le perturbazioni deve essere dotato di elasticità allo stesso modo che lo è un ordinario corpo solido solo che di valore differente. L'elasticità del mezzo è poi di estrema utilità per la spiegazione dei fenomeni elettrostatici. Questa supposta elasticità del mezzo faceva introdurre a Maxwell un concetto che avrà enorme importanza negli sviluppi successivi, quello di spostamento elettrico. Qui Maxwell si riallacciava direttamente a Faraday ed in particolare alle sue ricerche sui dielettrici ed alla scoperta della loro polarizzazione. Dice Maxwell:

"Possiamo pensare che l'elettricità che risiede in ogni molecola sia spostata in modo tale che una estremità di essa divenga positiva e l'altra negativa. L'effetto di questa azione sull'intera massa del dielettrico è quello di produrre uno spostamento generale dell'elettricità in una data direzione. Questo spostamento non giunge al livello di una corrente perché quando ha raggiunto un certo valore rimane constante, tuttavia è l'inizio di una corrente e le sue variazioni costituiscono correnti di direzione positiva o negativa, a seconda che lo spostamento aumenti o diminuisca".

Questa elasticità del mezzo, che forniva a Maxwell l'analogia per i suoi sviluppi matematici, è anche estesa al mezzo esterno, allo spazio, all'etere elettromagnetico. Ed in definitiva le azioni elettromagnetiche hanno sede in un mezzo elastico ma, con che velocità si propagano? La risposta a questa domanda da parte di Maxwell rappresenta la prima formulazione della teoria elettromagnetica della luce. Facendo i conti sulla velocità di propagazione di una perturbazione (oggi diremmo: onda) elettromagnetica nel mezzo elastico etere, considerando la relazione esistente tra la corrente di spostamento e la forza che la produce e deducendo da questa la relazione esistente tra misure statiche e dinamiche dell'elettricità, egli trovò che:

"la velocità delle ondulazioni trasversali nel nostro mezzo ipotetico, calcolata a partire dagli esperimenti elettromagnetici di Kohlrausch e Weber (4) , si accorda in modo tanto esatto con la velocità della luce calcolata a partire dagli esperimenti di Fizeau, che noi non possiamo quasi fare a meno di concludere che la luce consiste nelle ondulazioni trasversali del medesimo mezzo che è causa dei fenomeni elettrici e magnetici".

Ecco quindi che con poche parole si avanza una ipotesi rivoluzionaria: l'ottica sparisce per diventare un capitolo dell'elettromagnetismo. E tutto ciò a partire da una successione di azzardate ipotesi concatenate nel modo visto. Se si confronta il continuo impegno di Faraday nel cercare di eliminare dalla fisica enti inutili, con le innumerevoli ipotesi 'ad hoc' di Maxwell e con il suo dotare l'etere, già rifiutato da Faraday, di innumerevoli proprietà meccaniche e di meccanismi tanto utili al calcolo quanto artificiosi, ci si rende conto della profonda differenza esistente, non tanto tra i due, quanto tra due diverse generazioni di ricercatori, tra due epoche diverse per sollecitazioni esterne, tra l'essere filosofo naturale e scienziato di professione.

Terza memoria di Maxwell, della fine del 1864.

Si tratta della ponderosa A Dynamical Theory of the Electromagnetic Field (bibl. 14). Mentre nella precedente memoria Maxwell aveva elaborato il modello meccanico che abbiamo descritto e che gli era servito per chiarirsi le idee e per mettere a punto il calcolo con l'ausilio delle analogie cui abbiamo accennato, ora egli abbandona il modello meccanico, si serve solo dell'etere e si occupa esclusivamente dei fenomeni elettromagnetici in quanto tali per sottoporli al calcolo. Questo lavoro contiene tutti i principali risultati che egli aveva precedentemente ottenuto e può essere considerato come la prima formulazione completa, dal punto di vista analitico, della teoria del campo elettromagnetico e della teoria elettromagnetica della luce. Le proprietà di questo campo sono descritte da 20 equazioni generali. Lo stesso Maxwell, all'inizio della memoria, annunciava che la sua era una teoria dinamica nel senso che si serve di materia in moto nello spazio per rendere conto dei fenomeni elettrici e magnetici. ...

 

Questo etere ha una natura elettromagnetica ma poiché ha le stesse proprietà (elasticità, densità, …) di un etere ottico, può essere identificato con esso (è interessante notare che le proprietà dell'etere elettromagnetico Maxwell le assegnava a priori in modo che esso avesse poi avuto le caratteristiche che si richiedevano, ad esempio, per trasportare vibrazioni trasversali ad una data velocità). Vi sono infine le questioni energetiche. Per Maxwell l'energia è localizzata in tutto lo spazio ed è tutta di natura meccanica: egli considera un etere costituito da una enorme quantità di piccolissime cellule che, all'interno di un campo magnetico, ruotano tutte nello stesso verso attorno ad assi paralleli alle linee di forza. Così Maxwell può affermare che "l'energia cinetica di questo movimento vorticoso non differisce dall'energia magnetica …[e], in ogni punto del dielettrico sottoposto ad un campo, si accumula una energia che, nel modello, è elastica, ma che in realtà non è altro che energia cinetica" ...

Treatise on Electricity and Magnetism, 1873.

A questo punto della sua attività scientifica, Maxwell voleva ricapitolare e mettere in bell'ordine il complesso dei suoi lavori elettromagnetici. Si ritirò nella sua casa di campagna (1865) dove la sua principale occupazione fu la compilazione del Treatise on Electricity and Magnetism (bibl. 15) che vide la luce nel 1873, sei anni prima della prematura scomparsa dello stesso Maxwell (aveva 48 anni). Il lavoro è ora sistematico ed i contributi di Maxwell si mescolano con quelli di altri autori risultando addirittura compressi e non esaltati. Sulla strada della terza memoria, Maxwell abbandona del tutto i modelli meccanici affidandosi al solo etere al quale sembra assegnare una realtà fisica. Egli tralascia molti dei procedimenti che lo avevano guidato sulla strada della scoperta delle sue equazioni del campo elettromagnetico. La deduzione di queste equazioni è puramente analitica a partire dalle equazioni fondamentali della meccanica nella forma che ad esse aveva dato Lagrange. Paradossalmente in questo modo di operare sparisce la meccanica stessa che diventa, in definitiva, una teoria eminentemente matematica, elaborata con Green, Stokes ed Hamilton. L'elettromagnetismo diventa quindi una meccanica dell'etere e, come lo stesso Maxwell affermava, "l'integrale è l'espressione matematica adeguata per la teoria dell'azione a distanza tra particelle, mentre l'equazione differenziale è l'espressione appropriata per una teoria dell'azione esercitata tra particelle contigue di un mezzo". L'elaborazione matematica di Maxwell, anche qui, arriva alle 20 equazioni che descrivono il comportamento del campo elettromagnetico (si osservi che il numero di queste equazioni verrà ridotto a 9 da Hertz ed a 5 da Lorentz, 4 provenienti dalla teoria di Maxwell ed una rappresentante la Forza di Lorentz).