^^Velocita' discesa in funzione del dislivello. 2012.

Qui relazione, la' approfond.

Caso complementare: = dislivello, ≠ inclinazioni

Indicazioni per redigere la relazione. (Le indicazioni non ricopiare).

  1. Non ricopiare gli approfondimenti.
  2. L'esp e' fatto da 2 esp: 1: Velocita' discesa causata da: = dislivello, ≠ inclinazioni.; 2: quello qui descritto.
  3. Disegno del solo esp2 in scala 1:10 per: le altezze discese; lunghezze gittata; altezza decollo; usando i valori ideali di gittata (calcolati qui avanti). Traiettoria e inclinazione, sensate. E' il dis da fare a inizio relaz.
  4. Ricopiare cio' che segue.

Descrizione semplice del fenomeno

Una sfera rotola su una retta inclinata, che termina con un raccordo orizzontale, che la lancia in aria, vola, e cade sul pavimento.

 

Notiamo che per moltiplicare per 2 la gittata da L1 a L4, occorre moltiplicare l'altezza per 4 da H1 a H4 .

 

EC energia cinetica. EG en gravitazionale.

L'EC alla fine della discesa e' = all'EG  all'inizio. In accordo col principio di conservazione dell'energia.

Scopo. che velocita' sara' prodotta dalla trasformazione di energia ?

Per misurare la velocita'.

v velocita di decollo di un lancio orizzontale e' direttamente proporzionale alla gittata

Per misurare EG

EG = P*H.

Teoria. L = k√H

Per l'elaborazione dei risultati dell'esp consideriamo una formula semplificata che evidenzia solo l'aspetto che ci interessa.

dim:

  1. L = kv  dove k e' il tempo di volo. E v dipende da Ec ...
  2. v = √(2Ec /M) . E  EC dipende da EG ...
  3. EC = EG . E  EG dipende da H ...
  4. EG = P*H.
  5. Sostituendo si ottiene l'asserto.

Apparato sperimentale

  1. Piano orizzontale di lancio. 85cm = HL altezza del piano orizzontale di lancio; altezza rispetto al piano di impatto. Cioe' il dislivello del volo, dal decollo all'impatto.
  2. Guida per la discesa. Per fissarla: nastro adesivo per qualche centimetro sul fondo interno della guida, e continua aderendo al bordo del tavolo.
  3. Sfera.

Accorgimenti sperimentali

  1. Non confondere i dislivelli della discesa ∆H (verticali), con le lunghezze s percorse sulla guida (inclinate). I corrispondenti ∆H ↔ s  sono ∆H < s. >>>
  2. La sfera deve rotolare senza strisciare. Se scivola l'effetto sulla velocita' cambia.

Gittata ideale

  cm cm cm cm cm
N H L ∆H ∆L L/√H
0 0 0 +10 +49  
1 10 49 +10 +20 15,5
2 20 69 +10 +16 15,5
3 30 85 +10 +13 15,5
4 40 98 /// /// 15,5
   Nelle condizioni:
  1. HL= 85cm
  2. lancio orizzontale
  3. sfera omogenea che rotola senza strisciare
  4. tutta l'energia gravitazionale si trasforma in en cinetica, cioe' zero dissipazione di energia
  5. resistenza aria trascurabile.

Studiare come la gittata dipende dall'altezza della discesa di lancio

Procedimento

  1. 3 lanci per ogni fissate altezza
  2. 4 diverse altezze

Dati di Ratti Samuele 2B 2013-14 .ods

             
N H L   √H   L/√H
0 0 0   0    
1 10 28,4   3,16   12,0
2 20 43,7   4,47   12,9
3 30 58,8   5,47   12,3
4 40 75,4   6,32   13,2
  

L/√H idealmente dovrebbe essere costante, invece ha una variazione percentuale 9,5%.

Coi nostri mezzi possiamo ritenerlo un risultato discreto.

Chi ha dati migliori li usi.

Fare il grafico cartesiano della funzione LfH, con le dimensioni qui indicate.

Asse Lung

 cm

Scala

 1cm:

x = H 10 5
y = L 10 10

Graficare nello stesso rettangolo cartesiano sia i dati ideali che quelli sperimentali. Vedi .ods

 

 

 

Conclusioni

  1. La velocita' alla fine della discesa non e' dir prop all'altezza della discesa.
    In termini energetici: la velocita' non e' dir prop all'en cinetica.
  2. I dati disponibili non permettono di confermare la forma della dipendenza prevista, e cioe' L/√H = kostante, con una approssimazione < 10%.

 

 

 

Approfond

1  
Ec
Mv2   v = √(2Ec /M)
2  
    
Ec Energia cinetica del pm (punto materiale)
M, v   massa e velocita' del pm

Teoria. Si puo' calcolare-prevedere la velocita' alla fine della discesa, e la lunghezza del lancio.

Per l'elaborazione dei risultati dell'esp consideriamo una formula semplificata che evidenzia solo l'aspetto che ci interessa:

v = k√H   la velocita' e' dir prop alla radice quadrata dell'altezza della discesa.

L = kv = k√H  la lunghezza del lancio e' dir prop √H

Cerchiamo di capire in un caso particolare la validita' della formula.

  1. La velocita' a fine discesa e' indipendente dalla traiettoria, per considerazioni energetiche e esp1. Quindi per calcolarla considero il caso comodo della discesa verticale.
  2. Il moto di discesa e' un MAKv00, un moto ad acceleraz costante, con v0=0 partenza a velocita' 0.
  3. Per  raddoppiare la velocita', occorre un tempo doppio, poiche' nel MAKv00 v=at la velocita' e' dir prop al tempo (trascorso dalla partenza a velocita' 0).
  4. Ma se il tempo raddoppia (t*2), lo spazio quadruplica (s*4). In simboli  2t4s.
  5. Allora per raddoppiare la velocita' occorre uno spazio quadruplo. In simboli 2t4s2v.
  6. Confrontiamo con la predizione formula. Premesso: v1 = k√H1  v4 = k√H4    H4 = 4H1 
    Segue  v4 = k√H4  = k√(4H1)  = k√4√H1  = k2√H1  = 2k√H1  = 2v1

Dati di altri sperimentatori

Dati di Bertellotti 2B 8-11-2012.ods

                 
N H L1 L2 L3   L ∆L L/√H
0 0 0 0 0   0 +28,4  
1 10 28 28,2 29   28,4 +15,3 9,0
2 20 43,7 44,5 42,8   43,7 +15,1 9,8
3 30 59,5 59 58   58,8 +16,6 10,7
4 40 74 74,3 78   75,4 /// 11,9
   L valor medio di L1 L2 L3

 

L/√H idealmente dovrebbe essere costante, invece ha una variazione percentuale 28,5%. Si poteva fare di meglio.

Chi ha dati migliori li usi.

Conclusioni

I dati disponibili non permettono di confermare la forma della dipendenza prevista, e cioe' L/√H = kostante, poiche' cio' che dovrebbe essere una costante, ha invece una variabilita' del 28%, ed e' troppo.

 

 

Talk

 

Scopo. Studiare la relazione tra: l'en cinetica di un corpo, e la sua velocita'.

Il teatro operativo proposto soddisfa questo scopo, poiche':

  1. l'altezza della discesa misura l'en cinetica del corpo alla fine della discesa. EC = kH
  2. la lunghezza del lancio misura la velocita' del corpo alla fine della discesa. v = kL

dim1: EC = EG poiche' tutta l'en gravitazionale si trasforma in en cinetica. EG = P*H. In totale EC = P*H.

dim2: a) La lunghezza del lancio orizzontale e' direttamente proporzionale alla velocita' di decollo. E' la conclusione dell'ultimo esp dell'anno di studio precedente.
b) La velocita' di decollo si puo' ritenere uguale alla velocita' alla fine della discesa, poiche' nelle nostre condizioni la diminuzione di velocita' nel tratto orizzontale che porta al decollo, e' trascurabile.

Scopo. Studiare la relazione tra: l'en cinetica di un corpo, e la sua velocita'.

Il teatro operativo proposto soddisfa questo scopo, poiche' siamo in grado di misurare entrambe: l'energia cinetica e la velocita'.

  1. EC . L'EC della sfera alla fine del dislivello e' il risultato della trasformazione della sua en gravitazionale EG all'inizio: EC = EG .  EG = P*H. In totale EC = P*H.
  2. v. v velocita di decollo di un lancio orizzontale e' direttamente proporzionale alla gittata

Interpretaz energetica di v = k√H 

v = k√EC  siccome H misura EC . La velocita' e' dir prop alla radice quadrata dell'en cinetica.

v2 = kEC  il quadrato della velocita' e' dir prop all'en cinetica, e viceversa, l'en cin e' dir prop al quadrato della velocita', che e' la formula standard

1  
Ec
Mv2
2  
    
Ec Energia cinetica del pm (punto materiale)
M, v   massa e velocita' del pm